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Abstract:

ANN models for the opening jaw starting
fr om the closed position are studied here. The
models link final tension valuesin four active jaw
muscles to final jaw positions and final tensions
in the remaining muscles.The modelsassumethe
jaw opensin the midline: thus, right- and left-side
muscleshave equal tensions,and jaw motion is in
two dimensions.We have examinedtwo ANN jaw
models. One givesjaw motion and passivemuscle
tensionsgiven active muscle tensions. The other,
possibly of practical use, gives jaw motion given
active muscletensions;passivemuscletensionsap-
pear as signals inside the model.

I Introduction.

An electrical engineerspendsmuch of his life
modellingelectricalphonema,so modellingbecomes
secondnatureandM.P.B. hasbeenfascinatedby Ar-
tificial NeuralNetsnot somuchto modellife systems
directly, as to producefast and teachableprocessors
which can be taught to producemuch the samere-
sultsasthosefrom “in vivo” measurementsor from a
suitablebiomechanicalsimulator. High speedarises
by processingin parallel: teachabilityarisesfrom the
Back-PropagationMethodfor settingcircuit weights.
“Cause” and “Effect” data only are required.. The
jaw is complex physiologically, and it is generally
believedthat at least16 musclesareusedto produce
jaw motion. The activesetprovidesmuscletensions
to overcomeinertia, to move the jaw againsta food
bolus if present,and so on; and the inactive mus-
clesdeveloptensionsto resiststretchpassively.Early
possibilitiesof using ANNs to model jaw behaviour
werepointedout by [9], but herewe are working to
developan essentiallysteady-statemodelof the jaw.

Recently [5], the Peck-Langenbach-Hannam(PLH)
dynamicmodelhasbeendevelopedat U.B.C for the
humanjaw. It is basedon publishedmusculoskele-
tal data,and usescomplexcomputingtechniquesto
produceplausible,wide, jaw-opening. Each of the
jaw musclesis modelledfrom appropriateanatomi-
cal and physical propertiesas a single-line actuator
[10] which includean activecomponentrepresenting
motordrive by thecentralnervoussystem,anda pas-
sive componentdeterminedby local musclestretch.
Theactuatorscreateforceson a jaw with averagege-
ometricaland inertial properties,and causerealistic
jaw motions. By contributingto a betterunderstand-
ing of operationalprinciples,simulatorslike this offer
bioengineeringsolutionsto problemsencounteredby
practitionersin variousfields of therapy.

The above simulator is a rich source of data
with which to train the presentANN-jaw models.
The systemis assumedto be symmetrical,and jaw
position is given by the x-coordinate,miptx, and y-
coordinate,mipty, of a midline incisal point relative
to an origin at theclosedposition. Dueto symmetry,
16 muscle tensionsare representedby 8 pairs of
data. The measurementsin Table 1 representthose
for jaw openingonly. Two openermusclepairswere
activated,namely the anteriorbelly of the digastric,
dg, and the inferior head of the lateral pterygoid,
ip. The other muscleswere not activated,but they
developedpassivetensionsdue to their viscoelastic
propertiesand changesin musclelength as the jaw
moved. The measurementsare for steady-stateonly.
By this is meantthat, e.g. for column i=2, if steady
muscletensionsdg=0 Newtonsand ip=1.5 Newtons,
thenthe jaw will openby an amountmiptx = 0.0173
Meter and mipty = 0.0037Meter; the remainingsix
muscle-pairswill settle to tensionsindicated. The
ANN modelwhich solvesequation(1) belowis based
on this table.
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Table1: 3 setsfrom a 59–setof
steady–statemeasurementsof T(m;i) from
the PLH simulator.

m Set i=1 Set i=2 Seti=3

dg 1 0.0 0.0 0.0

ip 2 0.0 1.5 3.0

x 3 .001 .017 .025

y 4 -.004 .004 .008

at 5 .384 .431 .379

mt 6 .172 .334 .401

pt 7 .136 .608 .702

sm 8 .394 .302 .348

dm 9 .147 .156 .167

mp 10 .315 .321 .324

Legend: T(m;i) = “target” value of muscletension
or jaw displacement. x =jaw–displacementmiptx
(meters),y = jaw-displacementmipty (meters). dg
andip areactivemuscletensions,all otherquantitites
are tensionsof passivemuscles. All tensionsare
expressedin Newtons.

II.I The ANN JawModel.

Thefield of Artificial NeuralNetworksis mature
andmanyapplicationsare reported.Currenttexts in
the field are [1,4,7]. A convenientstarting point to
the ANN design is to considerthe 10 x 59 matrix
of experimentaldata (the first 3 sets are shown in
Table 1). The first two row entries,dg and ip, are
the “cause” of “effects” shownin the other rows, x
= miptx, y = mipty, ...... mp. Supposewe discount
cross-informationbetweenthe effects, then a simple
effect–causeequationcan be written:

���������
	���
�������� ����������	�������������	
 �! ����	

whereT(1;i) is theith valueof dg,andT(2;i) is theith
value of ip. The left-handtermsare “target” values
for m = 3–10, and i = 1–59. For a particular m,
we havetwo inputs. What ANN configurationwould
solve this?

“Theorem 1.1: A 2–layer neural network with
2N+1 neuronsin the first (hidden) layer and with

suitabletransformationsof the input signals,canex-
actly implementanyfunction in anN-dimensionalin-
put space(N≥2)” Annema1995).ForN=2, thehidden
layershouldhave5 or moreprocessingelements.We
assumedthat the theoremreferredto a lower limit,
and we found that somewhatbetterresultswere ob-
tainedwith 8 neuronsin the hiddenlayer. Thus,the
2–8–1configuration in Figure 1.

Eight separatenetworks, (Figure 1) realized
equation(1) with O(m;i) replacingT(m;i); the two
areaboutequal.Detailsof training andothermatters
werereportedin [2]. NMSE() will be lessthan0.003
after a small amountof training. (Incisor motion an-
terior, miptx, with 281 architecturehasa fairly large
error, but this can be reducedby a factor of 3 using
a 3–layerANN with architecture2641.)
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Figure 1: mth 2–8–1 two-layer
ANN for realizing equation(1).

II.II Free-moving jaw,
FeedbackModel ANN2

Thefirst two rowsof Table1 give input causing
jaw opening; the next two rows give resulting jaw
movements.We would like our ANN jaw model to
work only with thesequantitiesbut to give, in passing,
the datafrom the remainingrows. This canbe done
usingtwo interconnectednetworkswhichrespectively
obeyequations(2) and(3). Givendata(Table1) will
againbedenotedT(m;i): dataproducedby theANN2
will be denotedO(m;i).
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Figure 2: ANNs for 2 active muscle-pairs
and 6 passive muscle–pairsfor the free-
moving jaw, ANN2.

We shall train network 1, to realize equation
(2): this will be a 8–X–2 network where X is yet
to be determined..Network 2 realizing equation(3)
requiresan architectureof 2–Y-6 whereY hadyet to
be determined. We found that 8–20–2and 2–30–6,
a total of 68 processingelements,give ANNs which
canbe trainedto give an NMSE of lessthan0.0002.

III Discussion.
The ANN jaw model of Figure 1 seemsadequate
to representthe various steadymuscletensionsand
jaw movementslisted in Table1 by obeyingequation
1. Similarly, The ANN2 (Figure 2) gives useful
relationsbetween“cause”dg ip, and “effect” miptx,

mipty, etc.. The ANN modelswill produceresults
in a fraction of the time neededby the non-linear
biomechanicalmodel.

A “spline” approach[8, 11] using the data of
Table 1 was proposedand implementedrecentlyby
Dr. Iead Rezekand Dr. StephenJ. Roberts,both
at Imperial CollegeLondonbut now at University of
Oxford England. Good resultswere obtained. This
approachmerits further work.

ANN2 is of specialinterest.Supposewe teacha new
2–20–2network, say ANN3, to produceoutputsdg,
ip for inputs miptx, mipty. Then, ANN3 can drive
ANN2 with inputs miptx, mipty and final outputs
expectedvalues of miptx and mipty. ANN2 will
producemuscletensionpairsO(5;i) – O(10;i). Thus,
for any jaw displacementin our teachingset,we can
get correspondingmuscletensions.If the ANNs can
generalizefrom whattheyhavebeentaught,it maybe
possibleto get muscletensionsfor jaw displacments
not in the training set.

Two main questionsremain.
Doesthework apply to theasymmetricalcase?If so,
we might considerthe full rangeof responsesnor-
mally available to humans,including motions used
for masticationandotheractsinvolving the differen-
tial activationof musclesacrossthe neuraxis.?
Is it possibleto developa NeuralNetworkwith delays
which will solve the dynamic jaw motion problem?
Hints at elaboratesolutions are containedin refer-
ences[3,6]. Considera sampledversion of ANN2
in which i is now the samplingindex. It has been
trainedto obey equations2 and 3. We wish to pro-
ducejaw movementfrom onesteady-state,i = I0 and
terminatingatanothersteady-statei = IF. As it stands,
our ANN2 will consistentlyunder-predictmiptx and
mipty becausejaw inertia was not included in the
training.

A suggestedsolutionfollows. Alter equation(2)
and(3) to includeprevioussamplesof the output:*�+�,�-/.10�2�3�45 , 687 +�9:0�2)3�- 7 +�;�0�2)3�- 7 +�,�-�2�<=9 3�- 7 +�.
-�21<=9�3!-7 +�,�-�21<>;?3�- 7 +�.1-�2@<A;%3�-�*&+�B�-�2�3�- -!-�*&+/9 C�-�2�31D +�.E3

6 *�+�,�0�2�<=9 3�-�*�+�.10�2@<F9 3�-�*&+�,�0�21<�;%3�-*�+�.10�2@<A;%3�-�*&+�B�0�2�3�- -!-�*&+/9 C�0�2�3 D 45 ,HG 7 +�,�0�2�3�- 7 +�.10�2)3�I +�B%3
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A new network similar to that in Figure 2 but hav-
ing feedbacklinks is describedby equations(4) and
(5). We suggesttraining it with the Backpropagation
Method. Trainingsetscanbe obtainedfrom the PLH
model. Thetrainingsetswill havespecialinterestbe-
causewewantthenetworkto generalizeby predicting
near-correctoutputswhateverthe shapeof the driv-
ing setT(1,i); T(2,i). Wecanobtaintrainingsetswith
differing waveslinking the terminalstartngandstop-
ping points. Anothermatter: How doesthe network
behavewhen the startingand stoppingpoints them-
selvesare altered? The Artificial Network of equa-
tions (4) and(5) shouldbe ableto mimic themoving
jaw underthesevariationsof dg andip andwe hope,
in time, to demonstratethis experimentally.
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